Tesseract
3.02
|
#include <mastertrainer.h>
Public Member Functions | |
MasterTrainer (NormalizationMode norm_mode, bool shape_analysis, bool replicate_samples, int debug_level) | |
~MasterTrainer () | |
bool | Serialize (FILE *fp) const |
bool | DeSerialize (bool swap, FILE *fp) |
void | LoadUnicharset (const char *filename) |
void | SetFeatureSpace (const IntFeatureSpace &fs) |
void | ReadTrainingSamples (FILE *fp, const FEATURE_DEFS_STRUCT &feature_defs, bool verification) |
void | AddSample (bool verification, const char *unichar_str, TrainingSample *sample) |
void | LoadPageImages (const char *filename) |
void | PostLoadCleanup () |
void | PreTrainingSetup () |
void | SetupMasterShapes () |
void | IncludeJunk () |
void | ReplicateAndRandomizeSamplesIfRequired () |
bool | LoadFontInfo (const char *filename) |
bool | LoadXHeights (const char *filename) |
bool | AddSpacingInfo (const char *filename) |
int | GetFontInfoId (const char *font_name) |
int | GetBestMatchingFontInfoId (const char *filename) |
void | SetupFlatShapeTable (ShapeTable *shape_table) |
CLUSTERER * | SetupForClustering (const ShapeTable &shape_table, const FEATURE_DEFS_STRUCT &feature_defs, int shape_id, int *num_samples) |
void | WriteInttempAndPFFMTable (const UNICHARSET &unicharset, const UNICHARSET &shape_set, const ShapeTable &shape_table, CLASS_STRUCT *float_classes, const char *inttemp_file, const char *pffmtable_file) |
const UNICHARSET & | unicharset () const |
TrainingSampleSet * | GetSamples () |
const ShapeTable & | master_shapes () const |
void | DebugCanonical (const char *unichar_str1, const char *unichar_str2) |
void | DisplaySamples (const char *unichar_str1, int cloud_font, const char *unichar_str2, int canonical_font) |
void | TestClassifierOnSamples (int report_level, bool replicate_samples, ShapeClassifier *test_classifier, STRING *report_string) |
double | TestClassifier (int report_level, bool replicate_samples, TrainingSampleSet *samples, ShapeClassifier *test_classifier, STRING *report_string) |
float | ShapeDistance (const ShapeTable &shapes, int s1, int s2) |
Definition at line 68 of file mastertrainer.h.
tesseract::MasterTrainer::MasterTrainer | ( | NormalizationMode | norm_mode, |
bool | shape_analysis, | ||
bool | replicate_samples, | ||
int | debug_level | ||
) |
Definition at line 46 of file mastertrainer.cpp.
: norm_mode_(norm_mode), samples_(fontinfo_table_), junk_samples_(fontinfo_table_), verify_samples_(fontinfo_table_), charsetsize_(0), enable_shape_anaylsis_(shape_analysis), enable_replication_(replicate_samples), fragments_(NULL), prev_unichar_id_(-1), debug_level_(debug_level) { fontinfo_table_.set_compare_callback( NewPermanentTessCallback(CompareFontInfo)); fontinfo_table_.set_clear_callback( NewPermanentTessCallback(FontInfoDeleteCallback)); }
tesseract::MasterTrainer::~MasterTrainer | ( | ) |
Definition at line 62 of file mastertrainer.cpp.
{ delete [] fragments_; for (int p = 0; p < page_images_.size(); ++p) pixDestroy(&page_images_[p]); }
void tesseract::MasterTrainer::AddSample | ( | bool | verification, |
const char * | unichar_str, | ||
TrainingSample * | sample | ||
) |
Definition at line 179 of file mastertrainer.cpp.
{ if (verification) { verify_samples_.AddSample(unichar, sample); prev_unichar_id_ = -1; } else if (unicharset_.contains_unichar(unichar)) { if (prev_unichar_id_ >= 0) fragments_[prev_unichar_id_] = -1; prev_unichar_id_ = samples_.AddSample(unichar, sample); if (flat_shapes_.FindShape(prev_unichar_id_, sample->font_id()) < 0) flat_shapes_.AddShape(prev_unichar_id_, sample->font_id()); } else { int junk_id = junk_samples_.AddSample(unichar, sample); if (prev_unichar_id_ >= 0) { CHAR_FRAGMENT* frag = CHAR_FRAGMENT::parse_from_string(unichar); if (frag != NULL && frag->is_natural()) { if (fragments_[prev_unichar_id_] == 0) fragments_[prev_unichar_id_] = junk_id; else if (fragments_[prev_unichar_id_] != junk_id) fragments_[prev_unichar_id_] = -1; } delete frag; } prev_unichar_id_ = -1; } }
bool tesseract::MasterTrainer::AddSpacingInfo | ( | const char * | filename | ) |
Definition at line 417 of file mastertrainer.cpp.
{ FILE* fontinfo_file = fopen(filename, "rb"); if (fontinfo_file == NULL) return true; // We silently ignore missing files! // Find the fontinfo_id. int fontinfo_id = GetBestMatchingFontInfoId(filename); if (fontinfo_id < 0) { tprintf("No font found matching fontinfo filename %s\n", filename); fclose(fontinfo_file); return false; } tprintf("Reading spacing from %s for font %d...\n", filename, fontinfo_id); // TODO(rays) scale should probably be a double, but keep as an int for now // to duplicate current behavior. int scale = kBlnXHeight / xheights_[fontinfo_id]; int num_unichars; char uch[UNICHAR_LEN]; char kerned_uch[UNICHAR_LEN]; int x_gap, x_gap_before, x_gap_after, num_kerned; ASSERT_HOST(fscanf(fontinfo_file, "%d\n", &num_unichars) == 1); FontInfo *fi = fontinfo_table_.get_mutable(fontinfo_id); fi->init_spacing(unicharset_.size()); FontSpacingInfo *spacing = NULL; for (int l = 0; l < num_unichars; ++l) { if (fscanf(fontinfo_file, "%s %d %d %d", uch, &x_gap_before, &x_gap_after, &num_kerned) != 4) { tprintf("Bad format of font spacing file %s\n", filename); fclose(fontinfo_file); return false; } bool valid = unicharset_.contains_unichar(uch); if (valid) { spacing = new FontSpacingInfo(); spacing->x_gap_before = static_cast<inT16>(x_gap_before * scale); spacing->x_gap_after = static_cast<inT16>(x_gap_after * scale); } for (int k = 0; k < num_kerned; ++k) { if (fscanf(fontinfo_file, "%s %d", kerned_uch, &x_gap) != 2) { tprintf("Bad format of font spacing file %s\n", filename); fclose(fontinfo_file); return false; } if (!valid || !unicharset_.contains_unichar(kerned_uch)) continue; spacing->kerned_unichar_ids.push_back( unicharset_.unichar_to_id(kerned_uch)); spacing->kerned_x_gaps.push_back(static_cast<inT16>(x_gap * scale)); } if (valid) fi->add_spacing(unicharset_.unichar_to_id(uch), spacing); } fclose(fontinfo_file); return true; }
void tesseract::MasterTrainer::DebugCanonical | ( | const char * | unichar_str1, |
const char * | unichar_str2 | ||
) |
Definition at line 635 of file mastertrainer.cpp.
{ int class_id1 = unicharset_.unichar_to_id(unichar_str1); int class_id2 = unicharset_.unichar_to_id(unichar_str2); if (class_id2 == INVALID_UNICHAR_ID) class_id2 = class_id1; if (class_id1 == INVALID_UNICHAR_ID) { tprintf("No unicharset entry found for %s\n", unichar_str1); return; } else { tprintf("Font ambiguities for unichar %d = %s and %d = %s\n", class_id1, unichar_str1, class_id2, unichar_str2); } int num_fonts = samples_.NumFonts(); const IntFeatureMap& feature_map = feature_map_; // Iterate the fonts to get the similarity with other fonst of the same // class. tprintf(" "); for (int f = 0; f < num_fonts; ++f) { if (samples_.NumClassSamples(f, class_id2, false) == 0) continue; tprintf("%6d", f); } tprintf("\n"); for (int f1 = 0; f1 < num_fonts; ++f1) { // Map the features of the canonical_sample. if (samples_.NumClassSamples(f1, class_id1, false) == 0) continue; tprintf("%4d ", f1); for (int f2 = 0; f2 < num_fonts; ++f2) { if (samples_.NumClassSamples(f2, class_id2, false) == 0) continue; float dist = samples_.ClusterDistance(f1, class_id1, f2, class_id2, feature_map); tprintf(" %5.3f", dist); } tprintf("\n"); } // Build a fake ShapeTable containing all the sample types. ShapeTable shapes(unicharset_); for (int f = 0; f < num_fonts; ++f) { if (samples_.NumClassSamples(f, class_id1, true) > 0) shapes.AddShape(class_id1, f); if (class_id1 != class_id2 && samples_.NumClassSamples(f, class_id2, true) > 0) shapes.AddShape(class_id2, f); } }
bool tesseract::MasterTrainer::DeSerialize | ( | bool | swap, |
FILE * | fp | ||
) |
Definition at line 90 of file mastertrainer.cpp.
{ if (fread(&norm_mode_, sizeof(norm_mode_), 1, fp) != 1) return false; if (swap) { ReverseN(&norm_mode_, sizeof(norm_mode_)); } if (!unicharset_.load_from_file(fp)) return false; charsetsize_ = unicharset_.size(); if (!feature_space_.DeSerialize(swap, fp)) return false; feature_map_.Init(feature_space_); if (!samples_.DeSerialize(swap, fp)) return false; if (!junk_samples_.DeSerialize(swap, fp)) return false; if (!verify_samples_.DeSerialize(swap, fp)) return false; if (!master_shapes_.DeSerialize(swap, fp)) return false; if (!flat_shapes_.DeSerialize(swap, fp)) return false; if (!fontinfo_table_.read(fp, NewPermanentTessCallback(read_info), swap)) return false; if (!fontinfo_table_.read(fp, NewPermanentTessCallback(read_spacing_info), swap)) return false; if (!xheights_.DeSerialize(swap, fp)) return false; return true; }
void tesseract::MasterTrainer::DisplaySamples | ( | const char * | unichar_str1, |
int | cloud_font, | ||
const char * | unichar_str2, | ||
int | canonical_font | ||
) |
Definition at line 695 of file mastertrainer.cpp.
{ const IntFeatureMap& feature_map = feature_map_; const IntFeatureSpace& feature_space = feature_map.feature_space(); ScrollView* f_window = CreateFeatureSpaceWindow("Features", 100, 500); ClearFeatureSpaceWindow(norm_mode_ == NM_BASELINE ? baseline : character, f_window); int class_id2 = samples_.unicharset().unichar_to_id(unichar_str2); if (class_id2 != INVALID_UNICHAR_ID && canonical_font >= 0) { const TrainingSample* sample = samples_.GetCanonicalSample(canonical_font, class_id2); for (int f = 0; f < sample->num_features(); ++f) { RenderIntFeature(f_window, &sample->features()[f], ScrollView::RED); } } int class_id1 = samples_.unicharset().unichar_to_id(unichar_str1); if (class_id1 != INVALID_UNICHAR_ID && cloud_font >= 0) { const BitVector& cloud = samples_.GetCloudFeatures(cloud_font, class_id1); for (int f = 0; f < cloud.size(); ++f) { if (cloud[f]) { INT_FEATURE_STRUCT feature = feature_map.InverseIndexFeature(f); RenderIntFeature(f_window, &feature, ScrollView::GREEN); } } } f_window->Update(); ScrollView* s_window = CreateFeatureSpaceWindow("Samples", 100, 500); SVEventType ev_type; do { SVEvent* ev; // Wait until a click or popup event. ev = f_window->AwaitEvent(SVET_ANY); ev_type = ev->type; if (ev_type == SVET_CLICK) { int feature_index = feature_space.XYToFeatureIndex(ev->x, ev->y); if (feature_index >= 0) { // Iterate samples and display those with the feature. Shape shape; shape.AddToShape(class_id1, cloud_font); s_window->Clear(); samples_.DisplaySamplesWithFeature(feature_index, shape, feature_space, ScrollView::GREEN, s_window); s_window->Update(); } } delete ev; } while (ev_type != SVET_DESTROY); }
int tesseract::MasterTrainer::GetBestMatchingFontInfoId | ( | const char * | filename | ) |
Definition at line 487 of file mastertrainer.cpp.
{ int fontinfo_id = -1; int best_len = 0; for (int f = 0; f < fontinfo_table_.size(); ++f) { if (strstr(filename, fontinfo_table_.get(f).name) != NULL) { int len = strlen(fontinfo_table_.get(f).name); // Use the longest matching length in case a substring of a font matched. if (len > best_len) { best_len = len; fontinfo_id = f; } } } return fontinfo_id; }
int tesseract::MasterTrainer::GetFontInfoId | ( | const char * | font_name | ) |
Definition at line 472 of file mastertrainer.cpp.
{ FontInfo fontinfo; // We are only borrowing the string, so it is OK to const cast it. fontinfo.name = const_cast<char*>(font_name); fontinfo.properties = 0; // Not used to lookup in the table fontinfo.universal_id = 0; if (!fontinfo_table_.contains(fontinfo)) { return -1; } else { return fontinfo_table_.get_id(fontinfo); } }
TrainingSampleSet* tesseract::MasterTrainer::GetSamples | ( | ) | [inline] |
Definition at line 185 of file mastertrainer.h.
{
return &samples_;
}
void tesseract::MasterTrainer::IncludeJunk | ( | ) |
Definition at line 307 of file mastertrainer.cpp.
{ // Get ids of fragments in junk_samples_ that replace the dead chars. const UNICHARSET& junk_set = junk_samples_.unicharset(); const UNICHARSET& sample_set = samples_.unicharset(); int num_junks = junk_samples_.num_samples(); tprintf("Moving %d junk samples to master sample set.\n", num_junks); for (int s = 0; s < num_junks; ++s) { TrainingSample* sample = junk_samples_.mutable_sample(s); int junk_id = sample->class_id(); const char* junk_utf8 = junk_set.id_to_unichar(junk_id); int sample_id = sample_set.unichar_to_id(junk_utf8); if (sample_id == INVALID_UNICHAR_ID) sample_id = 0; sample->set_class_id(sample_id); junk_samples_.extract_sample(s); samples_.AddSample(sample_id, sample); } junk_samples_.DeleteDeadSamples(); samples_.OrganizeByFontAndClass(); }
bool tesseract::MasterTrainer::LoadFontInfo | ( | const char * | filename | ) |
Definition at line 345 of file mastertrainer.cpp.
{ FILE* fp = fopen(filename, "rb"); if (fp == NULL) { fprintf(stderr, "Failed to load font_properties from %s\n", filename); return false; } int italic, bold, fixed, serif, fraktur; while (!feof(fp)) { FontInfo fontinfo; char* font_name = new char[1024]; fontinfo.name = font_name; fontinfo.properties = 0; fontinfo.universal_id = 0; if (fscanf(fp, "%1024s %i %i %i %i %i\n", font_name, &italic, &bold, &fixed, &serif, &fraktur) != 6) continue; fontinfo.properties = (italic << 0) + (bold << 1) + (fixed << 2) + (serif << 3) + (fraktur << 4); if (!fontinfo_table_.contains(fontinfo)) { fontinfo_table_.push_back(fontinfo); } } fclose(fp); return true; }
void tesseract::MasterTrainer::LoadPageImages | ( | const char * | filename | ) |
Definition at line 209 of file mastertrainer.cpp.
void tesseract::MasterTrainer::LoadUnicharset | ( | const char * | filename | ) |
Definition at line 114 of file mastertrainer.cpp.
{ if (!unicharset_.load_from_file(filename)) { tprintf("Failed to load unicharset from file %s\n" "Building unicharset for training from scratch...\n", filename); unicharset_.clear(); // Space character needed to represent NIL_LIST classification. unicharset_.unichar_insert(" "); } charsetsize_ = unicharset_.size(); delete [] fragments_; fragments_ = new int[charsetsize_]; memset(fragments_, 0, sizeof(*fragments_) * charsetsize_); samples_.LoadUnicharset(filename); junk_samples_.LoadUnicharset(filename); verify_samples_.LoadUnicharset(filename); }
bool tesseract::MasterTrainer::LoadXHeights | ( | const char * | filename | ) |
Definition at line 377 of file mastertrainer.cpp.
{ tprintf("fontinfo table is of size %d\n", fontinfo_table_.size()); xheights_.init_to_size(fontinfo_table_.size(), -1); if (filename == NULL) return true; FILE *f = fopen(filename, "rb"); if (f == NULL) { fprintf(stderr, "Failed to load font xheights from %s\n", filename); return false; } tprintf("Reading x-heights from %s ...\n", filename); FontInfo fontinfo; fontinfo.properties = 0; // Not used to lookup in the table. fontinfo.universal_id = 0; char buffer[1024]; int xht; int total_xheight = 0; int xheight_count = 0; while (!feof(f)) { if (fscanf(f, "%1024s %d\n", buffer, &xht) != 2) continue; fontinfo.name = buffer; if (!fontinfo_table_.contains(fontinfo)) continue; int fontinfo_id = fontinfo_table_.get_id(fontinfo); xheights_[fontinfo_id] = xht; total_xheight += xht; ++xheight_count; } if (xheight_count == 0) { fprintf(stderr, "No valid xheights in %s!\n", filename); return false; } int mean_xheight = DivRounded(total_xheight, xheight_count); for (int i = 0; i < fontinfo_table_.size(); ++i) { if (xheights_[i] < 0) xheights_[i] = mean_xheight; } return true; } // LoadXHeights
const ShapeTable& tesseract::MasterTrainer::master_shapes | ( | ) | const [inline] |
Definition at line 188 of file mastertrainer.h.
{
return master_shapes_;
}
void tesseract::MasterTrainer::PostLoadCleanup | ( | ) |
Definition at line 223 of file mastertrainer.cpp.
{ if (debug_level_ > 0) tprintf("PostLoadCleanup...\n"); if (enable_shape_anaylsis_) ReplaceFragmentedSamples(); SampleIterator sample_it; sample_it.Init(NULL, NULL, true, &verify_samples_); sample_it.NormalizeSamples(); verify_samples_.OrganizeByFontAndClass(); samples_.IndexFeatures(feature_space_); // TODO(rays) DeleteOutliers is currently turned off to prove NOP-ness // against current training. // samples_.DeleteOutliers(feature_space_, debug_level_ > 0); samples_.OrganizeByFontAndClass(); if (debug_level_ > 0) tprintf("ComputeCanonicalSamples...\n"); samples_.ComputeCanonicalSamples(feature_map_, debug_level_ > 0); }
void tesseract::MasterTrainer::PreTrainingSetup | ( | ) |
Definition at line 246 of file mastertrainer.cpp.
void tesseract::MasterTrainer::ReadTrainingSamples | ( | FILE * | fp, |
const FEATURE_DEFS_STRUCT & | feature_defs, | ||
bool | verification | ||
) |
Definition at line 136 of file mastertrainer.cpp.
{ char buffer[2048]; int int_feature_type = ShortNameToFeatureType(feature_defs, kIntFeatureType); int micro_feature_type = ShortNameToFeatureType(feature_defs, kMicroFeatureType); int cn_feature_type = ShortNameToFeatureType(feature_defs, kCNFeatureType); int geo_feature_type = ShortNameToFeatureType(feature_defs, kGeoFeatureType); while (fgets(buffer, sizeof(buffer), fp) != NULL) { if (buffer[0] == '\n') continue; char* space = strchr(buffer, ' '); if (space == NULL) { tprintf("Bad format in tr file, reading fontname, unichar\n"); continue; } *space++ = '\0'; int font_id = GetFontInfoId(buffer); int page_number; STRING unichar; TBOX bounding_box; if (!ParseBoxFileStr(space, &page_number, &unichar, &bounding_box)) { tprintf("Bad format in tr file, reading box coords\n"); continue; } CHAR_DESC char_desc = ReadCharDescription(feature_defs, fp); TrainingSample* sample = new TrainingSample; sample->set_font_id(font_id); sample->set_page_num(page_number + page_images_.size()); sample->set_bounding_box(bounding_box); sample->ExtractCharDesc(int_feature_type, micro_feature_type, cn_feature_type, geo_feature_type, char_desc); AddSample(verification, unichar.string(), sample); FreeCharDescription(char_desc); } charsetsize_ = unicharset_.size(); }
void tesseract::MasterTrainer::ReplicateAndRandomizeSamplesIfRequired | ( | ) |
Definition at line 333 of file mastertrainer.cpp.
{ if (enable_replication_) { if (debug_level_ > 0) tprintf("ReplicateAndRandomize...\n"); verify_samples_.ReplicateAndRandomizeSamples(); samples_.ReplicateAndRandomizeSamples(); samples_.IndexFeatures(feature_space_); } }
bool tesseract::MasterTrainer::Serialize | ( | FILE * | fp | ) | const |
Definition at line 71 of file mastertrainer.cpp.
{ if (fwrite(&norm_mode_, sizeof(norm_mode_), 1, fp) != 1) return false; if (!unicharset_.save_to_file(fp)) return false; if (!feature_space_.Serialize(fp)) return false; if (!samples_.Serialize(fp)) return false; if (!junk_samples_.Serialize(fp)) return false; if (!verify_samples_.Serialize(fp)) return false; if (!master_shapes_.Serialize(fp)) return false; if (!flat_shapes_.Serialize(fp)) return false; if (!fontinfo_table_.write(fp, NewPermanentTessCallback(write_info))) return false; if (!fontinfo_table_.write(fp, NewPermanentTessCallback(write_spacing_info))) return false; if (!xheights_.Serialize(fp)) return false; return true; }
void tesseract::MasterTrainer::SetFeatureSpace | ( | const IntFeatureSpace & | fs | ) | [inline] |
Definition at line 84 of file mastertrainer.h.
{ feature_space_ = fs; feature_map_.Init(fs); }
void tesseract::MasterTrainer::SetupFlatShapeTable | ( | ShapeTable * | shape_table | ) |
Definition at line 504 of file mastertrainer.cpp.
{ // To exactly mimic the results of the previous implementation, the shapes // must be clustered in order the fonts arrived, and reverse order of the // characters within each font. // Get a list of the fonts in the order they appeared. GenericVector<int> active_fonts; int num_shapes = flat_shapes_.NumShapes(); for (int s = 0; s < num_shapes; ++s) { int font = flat_shapes_.GetShape(s)[0].font_ids[0]; int f = 0; for (f = 0; f < active_fonts.size(); ++f) { if (active_fonts[f] == font) break; } if (f == active_fonts.size()) active_fonts.push_back(font); } // For each font in order, add all the shapes with that font in reverse order. int num_fonts = active_fonts.size(); for (int f = 0; f < num_fonts; ++f) { for (int s = num_shapes - 1; s >= 0; --s) { int font = flat_shapes_.GetShape(s)[0].font_ids[0]; if (font == active_fonts[f]) { shape_table->AddShape(flat_shapes_.GetShape(s)); } } } }
CLUSTERER * tesseract::MasterTrainer::SetupForClustering | ( | const ShapeTable & | shape_table, |
const FEATURE_DEFS_STRUCT & | feature_defs, | ||
int | shape_id, | ||
int * | num_samples | ||
) |
Definition at line 535 of file mastertrainer.cpp.
{ int desc_index = ShortNameToFeatureType(feature_defs, kMicroFeatureType); int num_params = feature_defs.FeatureDesc[desc_index]->NumParams; ASSERT_HOST(num_params == MFCount); CLUSTERER* clusterer = MakeClusterer( num_params, feature_defs.FeatureDesc[desc_index]->ParamDesc); // We want to iterate over the samples of just the one shape. IndexMapBiDi shape_map; shape_map.Init(shape_table.NumShapes(), false); shape_map.SetMap(shape_id, true); shape_map.Setup(); // Reverse the order of the samples to match the previous behavior. GenericVector<const TrainingSample*> sample_ptrs; SampleIterator it; it.Init(&shape_map, &shape_table, false, &samples_); for (it.Begin(); !it.AtEnd(); it.Next()) { sample_ptrs.push_back(&it.GetSample()); } int sample_id = 0; for (int i = sample_ptrs.size() - 1; i >= 0; --i) { const TrainingSample* sample = sample_ptrs[i]; int num_features = sample->num_micro_features(); for (int f = 0; f < num_features; ++f) MakeSample(clusterer, sample->micro_features()[f], sample_id); ++sample_id; } *num_samples = sample_id; return clusterer; }
void tesseract::MasterTrainer::SetupMasterShapes | ( | ) |
Definition at line 258 of file mastertrainer.cpp.
{ tprintf("Building master shape table\n"); int num_fonts = samples_.NumFonts(); ShapeTable char_shapes_begin_fragment(samples_.unicharset()); ShapeTable char_shapes_end_fragment(samples_.unicharset()); ShapeTable char_shapes(samples_.unicharset()); for (int c = 0; c < samples_.charsetsize(); ++c) { ShapeTable shapes(samples_.unicharset()); for (int f = 0; f < num_fonts; ++f) { if (samples_.NumClassSamples(f, c, true) > 0) shapes.AddShape(c, f); } ClusterShapes(kMinClusteredShapes, 1, kFontMergeDistance, &shapes); const CHAR_FRAGMENT *fragment = samples_.unicharset().get_fragment(c); if (fragment == NULL) char_shapes.AppendMasterShapes(shapes); else if (fragment->is_beginning()) char_shapes_begin_fragment.AppendMasterShapes(shapes); else if (fragment->is_ending()) char_shapes_end_fragment.AppendMasterShapes(shapes); else char_shapes.AppendMasterShapes(shapes); } ClusterShapes(kMinClusteredShapes, kMaxUnicharsPerCluster, kFontMergeDistance, &char_shapes_begin_fragment); char_shapes.AppendMasterShapes(char_shapes_begin_fragment); ClusterShapes(kMinClusteredShapes, kMaxUnicharsPerCluster, kFontMergeDistance, &char_shapes_end_fragment); char_shapes.AppendMasterShapes(char_shapes_end_fragment); ClusterShapes(kMinClusteredShapes, kMaxUnicharsPerCluster, kFontMergeDistance, &char_shapes); master_shapes_.AppendMasterShapes(char_shapes); tprintf("Master shape_table:%s\n", master_shapes_.SummaryStr().string()); }
float tesseract::MasterTrainer::ShapeDistance | ( | const ShapeTable & | shapes, |
int | s1, | ||
int | s2 | ||
) |
Definition at line 797 of file mastertrainer.cpp.
{ const IntFeatureMap& feature_map = feature_map_; const Shape& shape1 = shapes.GetShape(s1); const Shape& shape2 = shapes.GetShape(s2); int num_chars1 = shape1.size(); int num_chars2 = shape2.size(); float dist_sum = 0.0f; int dist_count = 0; if (num_chars1 > 1 || num_chars2 > 1) { // In the multi-char case try to optimize the calculation by computing // distances between characters of matching font where possible. for (int c1 = 0; c1 < num_chars1; ++c1) { for (int c2 = 0; c2 < num_chars2; ++c2) { dist_sum += samples_.UnicharDistance(shape1[c1], shape2[c2], true, feature_map); ++dist_count; } } } else { // In the single unichar case, there is little alternative, but to compute // the squared-order distance between pairs of fonts. dist_sum = samples_.UnicharDistance(shape1[0], shape2[0], false, feature_map); ++dist_count; } return dist_sum / dist_count; }
double tesseract::MasterTrainer::TestClassifier | ( | int | report_level, |
bool | replicate_samples, | ||
TrainingSampleSet * | samples, | ||
ShapeClassifier * | test_classifier, | ||
STRING * | report_string | ||
) |
Definition at line 770 of file mastertrainer.cpp.
{ SampleIterator sample_it; sample_it.Init(NULL, test_classifier->GetShapeTable(), replicate_samples, samples); if (report_level > 0) { int num_samples = 0; for (sample_it.Begin(); !sample_it.AtEnd(); sample_it.Next()) ++num_samples; tprintf("Iterator has charset size of %d/%d, %d shapes, %d samples\n", sample_it.SparseCharsetSize(), sample_it.CompactCharsetSize(), test_classifier->GetShapeTable()->NumShapes(), num_samples); tprintf("Testing %sREPLICATED:\n", replicate_samples ? "" : "NON-"); } double unichar_error = 0.0; ErrorCounter::ComputeErrorRate(test_classifier, report_level, CT_SHAPE_TOP_ERR, fontinfo_table_, page_images_, &sample_it, &unichar_error, NULL, report_string); return unichar_error; }
void tesseract::MasterTrainer::TestClassifierOnSamples | ( | int | report_level, |
bool | replicate_samples, | ||
ShapeClassifier * | test_classifier, | ||
STRING * | report_string | ||
) |
Definition at line 750 of file mastertrainer.cpp.
{ TestClassifier(report_level, replicate_samples, &samples_, test_classifier, report_string); }
const UNICHARSET& tesseract::MasterTrainer::unicharset | ( | ) | const [inline] |
Definition at line 182 of file mastertrainer.h.
{
return samples_.unicharset();
}
void tesseract::MasterTrainer::WriteInttempAndPFFMTable | ( | const UNICHARSET & | unicharset, |
const UNICHARSET & | shape_set, | ||
const ShapeTable & | shape_table, | ||
CLASS_STRUCT * | float_classes, | ||
const char * | inttemp_file, | ||
const char * | pffmtable_file | ||
) |
Definition at line 575 of file mastertrainer.cpp.
{ tesseract::Classify *classify = new tesseract::Classify(); // Move the fontinfo table to classify. classify->get_fontinfo_table().move(&fontinfo_table_); INT_TEMPLATES int_templates = classify->CreateIntTemplates(float_classes, shape_set); FILE* fp = fopen(inttemp_file, "wb"); classify->WriteIntTemplates(fp, int_templates, shape_set); fclose(fp); // Now write pffmtable. This is complicated by the fact that the adaptive // classifier still wants one indexed by unichar-id, but the static // classifier needs one indexed by its shape class id. // We put the shapetable_cutoffs in a GenericVector, and compute the // unicharset cutoffs along the way. GenericVector<uinT16> shapetable_cutoffs; GenericVector<uinT16> unichar_cutoffs; for (int c = 0; c < unicharset.size(); ++c) unichar_cutoffs.push_back(0); /* then write out each class */ for (int i = 0; i < int_templates->NumClasses; ++i) { INT_CLASS Class = ClassForClassId(int_templates, i); // Todo: Test with min instead of max // int MaxLength = LengthForConfigId(Class, 0); uinT16 max_length = 0; for (int config_id = 0; config_id < Class->NumConfigs; config_id++) { // Todo: Test with min instead of max // if (LengthForConfigId (Class, config_id) < MaxLength) uinT16 length = Class->ConfigLengths[config_id]; if (length > max_length) max_length = Class->ConfigLengths[config_id]; int shape_id = float_classes[i].font_set.get(config_id); const Shape& shape = shape_table.GetShape(shape_id); for (int c = 0; c < shape.size(); ++c) { int unichar_id = shape[c].unichar_id; if (length > unichar_cutoffs[unichar_id]) unichar_cutoffs[unichar_id] = length; } } shapetable_cutoffs.push_back(max_length); } fp = fopen(pffmtable_file, "wb"); shapetable_cutoffs.Serialize(fp); for (int c = 0; c < unicharset.size(); ++c) { const char *unichar = unicharset.id_to_unichar(c); if (strcmp(unichar, " ") == 0) { unichar = "NULL"; } fprintf(fp, "%s %d\n", unichar, unichar_cutoffs[c]); } fclose(fp); free_int_templates(int_templates); }