|
Tesseract
3.02
|
#include <trainingsample.h>
Public Member Functions | |
| TrainingSample () | |
| ~TrainingSample () | |
| TrainingSample * | RandomizedCopy (int index) const |
| TrainingSample * | Copy () const |
| bool | Serialize (FILE *fp) const |
| bool | DeSerialize (bool swap, FILE *fp) |
| void | ExtractCharDesc (int feature_type, int micro_type, int cn_type, int geo_type, CHAR_DESC_STRUCT *char_desc) |
| void | IndexFeatures (const IntFeatureSpace &feature_space) |
| void | MapFeatures (const IntFeatureMap &feature_map) |
| Pix * | RenderToPix (const UNICHARSET *unicharset) const |
| void | DisplayFeatures (ScrollView::Color color, ScrollView *window) const |
| Pix * | GetSamplePix (int padding, Pix *page_pix) const |
| UNICHAR_ID | class_id () const |
| void | set_class_id (int id) |
| int | font_id () const |
| void | set_font_id (int id) |
| int | page_num () const |
| void | set_page_num (int page) |
| const TBOX & | bounding_box () const |
| void | set_bounding_box (const TBOX &box) |
| int | num_features () const |
| const INT_FEATURE_STRUCT * | features () const |
| int | num_micro_features () const |
| const MicroFeature * | micro_features () const |
| float | cn_feature (int index) const |
| int | geo_feature (int index) const |
| double | weight () const |
| void | set_weight (double value) |
| double | max_dist () const |
| void | set_max_dist (double value) |
| int | sample_index () const |
| void | set_sample_index (int value) |
| bool | features_are_mapped () const |
| const GenericVector< int > & | mapped_features () const |
| const GenericVector< int > & | indexed_features () const |
| bool | is_error () const |
| void | set_is_error (bool value) |
Static Public Member Functions | |
| static TrainingSample * | CopyFromFeatures (const INT_FX_RESULT_STRUCT &fx_info, const INT_FEATURE_STRUCT *features, int num_features) |
| static TrainingSample * | DeSerializeCreate (bool swap, FILE *fp) |
Definition at line 53 of file trainingsample.h.
| tesseract::TrainingSample::TrainingSample | ( | ) | [inline] |
Definition at line 55 of file trainingsample.h.
| tesseract::TrainingSample::~TrainingSample | ( | ) |
Definition at line 40 of file trainingsample.cpp.
{
delete [] features_;
delete [] micro_features_;
}
| const TBOX& tesseract::TrainingSample::bounding_box | ( | ) | const [inline] |
Definition at line 131 of file trainingsample.h.
{
return bounding_box_;
}
| UNICHAR_ID tesseract::TrainingSample::class_id | ( | ) | const [inline] |
Definition at line 113 of file trainingsample.h.
{
return class_id_;
}
| float tesseract::TrainingSample::cn_feature | ( | int | index | ) | const [inline] |
Definition at line 149 of file trainingsample.h.
{
return cn_feature_[index];
}
| TrainingSample * tesseract::TrainingSample::Copy | ( | ) | const |
Definition at line 149 of file trainingsample.cpp.
{
TrainingSample* sample = new TrainingSample;
sample->class_id_ = class_id_;
sample->font_id_ = font_id_;
sample->weight_ = weight_;
sample->sample_index_ = sample_index_;
sample->num_features_ = num_features_;
if (num_features_ > 0) {
sample->features_ = new INT_FEATURE_STRUCT[num_features_];
memcpy(sample->features_, features_, num_features_ * sizeof(features_[0]));
}
sample->num_micro_features_ = num_micro_features_;
if (num_micro_features_ > 0) {
sample->micro_features_ = new MicroFeature[num_micro_features_];
memcpy(sample->micro_features_, micro_features_,
num_micro_features_ * sizeof(micro_features_[0]));
}
memcpy(sample->cn_feature_, cn_feature_, sizeof(*cn_feature_) * kNumCNParams);
memcpy(sample->geo_feature_, geo_feature_, sizeof(*geo_feature_) * GeoCount);
return sample;
}
| TrainingSample * tesseract::TrainingSample::CopyFromFeatures | ( | const INT_FX_RESULT_STRUCT & | fx_info, |
| const INT_FEATURE_STRUCT * | features, | ||
| int | num_features | ||
| ) | [static] |
Definition at line 110 of file trainingsample.cpp.
{
TrainingSample* sample = new TrainingSample;
sample->num_features_ = num_features;
sample->features_ = new INT_FEATURE_STRUCT[num_features];
memcpy(sample->features_, features, num_features * sizeof(features[0]));
sample->geo_feature_[GeoBottom] = fx_info.YBottom;
sample->geo_feature_[GeoTop] = fx_info.YTop;
sample->geo_feature_[GeoWidth] = fx_info.Width;
sample->features_are_indexed_ = false;
sample->features_are_mapped_ = false;
return sample;
}
| bool tesseract::TrainingSample::DeSerialize | ( | bool | swap, |
| FILE * | fp | ||
| ) |
Definition at line 80 of file trainingsample.cpp.
{
if (fread(&class_id_, sizeof(class_id_), 1, fp) != 1) return false;
if (fread(&font_id_, sizeof(font_id_), 1, fp) != 1) return false;
if (fread(&page_num_, sizeof(page_num_), 1, fp) != 1) return false;
if (!bounding_box_.DeSerialize(swap, fp)) return false;
if (fread(&num_features_, sizeof(num_features_), 1, fp) != 1) return false;
if (fread(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1)
return false;
if (swap) {
ReverseN(&class_id_, sizeof(class_id_));
ReverseN(&num_features_, sizeof(num_features_));
ReverseN(&num_micro_features_, sizeof(num_micro_features_));
}
delete [] features_;
features_ = new INT_FEATURE_STRUCT[num_features_];
if (fread(features_, sizeof(*features_), num_features_, fp) != num_features_)
return false;
delete [] micro_features_;
micro_features_ = new MicroFeature[num_micro_features_];
if (fread(micro_features_, sizeof(*micro_features_), num_micro_features_,
fp) != num_micro_features_)
return false;
if (fread(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) !=
kNumCNParams) return false;
if (fread(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount)
return false;
return true;
}
| TrainingSample * tesseract::TrainingSample::DeSerializeCreate | ( | bool | swap, |
| FILE * | fp | ||
| ) | [static] |
Definition at line 71 of file trainingsample.cpp.
{
TrainingSample* sample = new TrainingSample;
if (sample->DeSerialize(swap, fp)) return sample;
delete sample;
return NULL;
}
| void tesseract::TrainingSample::DisplayFeatures | ( | ScrollView::Color | color, |
| ScrollView * | window | ||
| ) | const |
Definition at line 283 of file trainingsample.cpp.
{
#ifndef GRAPHICS_DISABLED
for (int f = 0; f < num_features_; ++f) {
RenderIntFeature(window, &features_[f], color);
}
#endif // GRAPHICS_DISABLED
}
| void tesseract::TrainingSample::ExtractCharDesc | ( | int | feature_type, |
| int | micro_type, | ||
| int | cn_type, | ||
| int | geo_type, | ||
| CHAR_DESC_STRUCT * | char_desc | ||
| ) |
Definition at line 172 of file trainingsample.cpp.
{
// Extract the INT features.
if (features_ != NULL) delete [] features_;
FEATURE_SET_STRUCT* char_features = char_desc->FeatureSets[int_feature_type];
if (char_features == NULL) {
tprintf("Error: no features to train on of type %s\n",
kIntFeatureType);
num_features_ = 0;
features_ = NULL;
} else {
num_features_ = char_features->NumFeatures;
features_ = new INT_FEATURE_STRUCT[num_features_];
for (int f = 0; f < num_features_; ++f) {
features_[f].X =
static_cast<uinT8>(char_features->Features[f]->Params[IntX]);
features_[f].Y =
static_cast<uinT8>(char_features->Features[f]->Params[IntY]);
features_[f].Theta =
static_cast<uinT8>(char_features->Features[f]->Params[IntDir]);
features_[f].CP_misses = 0;
}
}
// Extract the Micro features.
if (micro_features_ != NULL) delete [] micro_features_;
char_features = char_desc->FeatureSets[micro_type];
if (char_features == NULL) {
tprintf("Error: no features to train on of type %s\n",
kMicroFeatureType);
num_micro_features_ = 0;
micro_features_ = NULL;
} else {
num_micro_features_ = char_features->NumFeatures;
micro_features_ = new MicroFeature[num_micro_features_];
for (int f = 0; f < num_micro_features_; ++f) {
for (int d = 0; d < MFCount; ++d) {
micro_features_[f][d] = char_features->Features[f]->Params[d];
}
}
}
// Extract the CN feature.
char_features = char_desc->FeatureSets[cn_type];
if (char_features == NULL) {
tprintf("Error: no CN feature to train on.\n");
} else {
ASSERT_HOST(char_features->NumFeatures == 1);
cn_feature_[CharNormY] = char_features->Features[0]->Params[CharNormY];
cn_feature_[CharNormLength] =
char_features->Features[0]->Params[CharNormLength];
cn_feature_[CharNormRx] = char_features->Features[0]->Params[CharNormRx];
cn_feature_[CharNormRy] = char_features->Features[0]->Params[CharNormRy];
}
// Extract the Geo feature.
char_features = char_desc->FeatureSets[geo_type];
if (char_features == NULL) {
tprintf("Error: no Geo feature to train on.\n");
} else {
ASSERT_HOST(char_features->NumFeatures == 1);
geo_feature_[GeoBottom] = char_features->Features[0]->Params[GeoBottom];
geo_feature_[GeoTop] = char_features->Features[0]->Params[GeoTop];
geo_feature_[GeoWidth] = char_features->Features[0]->Params[GeoWidth];
}
features_are_indexed_ = false;
features_are_mapped_ = false;
}
| const INT_FEATURE_STRUCT* tesseract::TrainingSample::features | ( | ) | const [inline] |
Definition at line 140 of file trainingsample.h.
{
return features_;
}
| bool tesseract::TrainingSample::features_are_mapped | ( | ) | const [inline] |
Definition at line 173 of file trainingsample.h.
{
return features_are_mapped_;
}
| int tesseract::TrainingSample::font_id | ( | ) | const [inline] |
Definition at line 119 of file trainingsample.h.
{
return font_id_;
}
| int tesseract::TrainingSample::geo_feature | ( | int | index | ) | const [inline] |
Definition at line 152 of file trainingsample.h.
{
return geo_feature_[index];
}
| Pix * tesseract::TrainingSample::GetSamplePix | ( | int | padding, |
| Pix * | page_pix | ||
| ) | const |
Definition at line 296 of file trainingsample.cpp.
{
if (page_pix == NULL)
return NULL;
int page_width = pixGetWidth(page_pix);
int page_height = pixGetHeight(page_pix);
TBOX padded_box = bounding_box();
padded_box.pad(padding, padding);
// Clip the padded_box to the limits of the page
TBOX page_box(0, 0, page_width, page_height);
padded_box &= page_box;
Box* box = boxCreate(page_box.left(), page_height - page_box.top(),
page_box.width(), page_box.height());
Pix* sample_pix = pixClipRectangle(page_pix, box, NULL);
boxDestroy(&box);
return sample_pix;
}
| const GenericVector<int>& tesseract::TrainingSample::indexed_features | ( | ) | const [inline] |
Definition at line 180 of file trainingsample.h.
{
ASSERT_HOST(features_are_indexed_);
return mapped_features_;
}
| void tesseract::TrainingSample::IndexFeatures | ( | const IntFeatureSpace & | feature_space | ) |
Definition at line 243 of file trainingsample.cpp.
{
GenericVector<int> indexed_features;
feature_space.IndexAndSortFeatures(features_, num_features_,
&mapped_features_);
features_are_indexed_ = true;
features_are_mapped_ = false;
}
| bool tesseract::TrainingSample::is_error | ( | ) | const [inline] |
Definition at line 184 of file trainingsample.h.
{
return is_error_;
}
| void tesseract::TrainingSample::MapFeatures | ( | const IntFeatureMap & | feature_map | ) |
Definition at line 253 of file trainingsample.cpp.
{
GenericVector<int> indexed_features;
feature_map.feature_space().IndexAndSortFeatures(features_, num_features_,
&indexed_features);
feature_map.MapIndexedFeatures(indexed_features, &mapped_features_);
features_are_indexed_ = false;
features_are_mapped_ = true;
}
| const GenericVector<int>& tesseract::TrainingSample::mapped_features | ( | ) | const [inline] |
Definition at line 176 of file trainingsample.h.
{
ASSERT_HOST(features_are_mapped_);
return mapped_features_;
}
| double tesseract::TrainingSample::max_dist | ( | ) | const [inline] |
Definition at line 161 of file trainingsample.h.
{
return max_dist_;
}
| const MicroFeature* tesseract::TrainingSample::micro_features | ( | ) | const [inline] |
Definition at line 146 of file trainingsample.h.
{
return micro_features_;
}
| int tesseract::TrainingSample::num_features | ( | ) | const [inline] |
Definition at line 137 of file trainingsample.h.
{
return num_features_;
}
| int tesseract::TrainingSample::num_micro_features | ( | ) | const [inline] |
Definition at line 143 of file trainingsample.h.
{
return num_micro_features_;
}
| int tesseract::TrainingSample::page_num | ( | ) | const [inline] |
Definition at line 125 of file trainingsample.h.
{
return page_num_;
}
| TrainingSample * tesseract::TrainingSample::RandomizedCopy | ( | int | index | ) | const |
Definition at line 128 of file trainingsample.cpp.
{
TrainingSample* sample = Copy();
if (index >= 0 && index < kSampleRandomSize) {
++index; // Remove the first combination.
int yshift = kYShiftValues[index / kSampleScaleSize];
double scaling = kScaleValues[index % kSampleScaleSize];
for (int i = 0; i < num_features_; ++i) {
double result = (features_[i].X - kRandomizingCenter) * scaling;
result += kRandomizingCenter;
sample->features_[i].X = ClipToRange(static_cast<int>(result + 0.5), 0,
MAX_UINT8);
result = (features_[i].Y - kRandomizingCenter) * scaling;
result += kRandomizingCenter + yshift;
sample->features_[i].Y = ClipToRange(static_cast<int>(result + 0.5), 0,
MAX_UINT8);
}
}
return sample;
}
| Pix * tesseract::TrainingSample::RenderToPix | ( | const UNICHARSET * | unicharset | ) | const |
Definition at line 263 of file trainingsample.cpp.
{
Pix* pix = pixCreate(kIntFeatureExtent, kIntFeatureExtent, 1);
for (int f = 0; f < num_features_; ++f) {
int start_x = features_[f].X;
int start_y = kIntFeatureExtent - features_[f].Y;
double dx = cos((features_[f].Theta / 256.0) * 2.0 * PI - PI);
double dy = -sin((features_[f].Theta / 256.0) * 2.0 * PI - PI);
for (int i = 0; i <= 5; ++i) {
int x = static_cast<int>(start_x + dx * i);
int y = static_cast<int>(start_y + dy * i);
if (x >= 0 && x < 256 && y >= 0 && y < 256)
pixSetPixel(pix, x, y, 1);
}
}
if (unicharset != NULL)
pixSetText(pix, unicharset->id_to_unichar(class_id_));
return pix;
}
| int tesseract::TrainingSample::sample_index | ( | ) | const [inline] |
Definition at line 167 of file trainingsample.h.
{
return sample_index_;
}
| bool tesseract::TrainingSample::Serialize | ( | FILE * | fp | ) | const |
Definition at line 49 of file trainingsample.cpp.
{
if (fwrite(&class_id_, sizeof(class_id_), 1, fp) != 1) return false;
if (fwrite(&font_id_, sizeof(font_id_), 1, fp) != 1) return false;
if (fwrite(&page_num_, sizeof(page_num_), 1, fp) != 1) return false;
if (!bounding_box_.Serialize(fp)) return false;
if (fwrite(&num_features_, sizeof(num_features_), 1, fp) != 1) return false;
if (fwrite(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1)
return false;
if (fwrite(features_, sizeof(*features_), num_features_, fp) != num_features_)
return false;
if (fwrite(micro_features_, sizeof(*micro_features_), num_micro_features_,
fp) != num_micro_features_)
return false;
if (fwrite(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) !=
kNumCNParams) return false;
if (fwrite(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount)
return false;
return true;
}
| void tesseract::TrainingSample::set_bounding_box | ( | const TBOX & | box | ) | [inline] |
Definition at line 134 of file trainingsample.h.
{
bounding_box_ = box;
}
| void tesseract::TrainingSample::set_class_id | ( | int | id | ) | [inline] |
Definition at line 116 of file trainingsample.h.
{
class_id_ = id;
}
| void tesseract::TrainingSample::set_font_id | ( | int | id | ) | [inline] |
Definition at line 122 of file trainingsample.h.
{
font_id_ = id;
}
| void tesseract::TrainingSample::set_is_error | ( | bool | value | ) | [inline] |
Definition at line 187 of file trainingsample.h.
{
is_error_ = value;
}
| void tesseract::TrainingSample::set_max_dist | ( | double | value | ) | [inline] |
Definition at line 164 of file trainingsample.h.
{
max_dist_ = value;
}
| void tesseract::TrainingSample::set_page_num | ( | int | page | ) | [inline] |
Definition at line 128 of file trainingsample.h.
{
page_num_ = page;
}
| void tesseract::TrainingSample::set_sample_index | ( | int | value | ) | [inline] |
Definition at line 170 of file trainingsample.h.
{
sample_index_ = value;
}
| void tesseract::TrainingSample::set_weight | ( | double | value | ) | [inline] |
Definition at line 158 of file trainingsample.h.
{
weight_ = value;
}
| double tesseract::TrainingSample::weight | ( | ) | const [inline] |
Definition at line 155 of file trainingsample.h.
{
return weight_;
}