Tesseract
3.02
|
00001 // Copyright 2011 Google Inc. All Rights Reserved. 00002 // Author: rays@google.com (Ray Smith) 00003 00004 // Licensed under the Apache License, Version 2.0 (the "License"); 00005 // you may not use this file except in compliance with the License. 00006 // You may obtain a copy of the License at 00007 // http://www.apache.org/licenses/LICENSE-2.0 00008 // Unless required by applicable law or agreed to in writing, software 00009 // distributed under the License is distributed on an "AS IS" BASIS, 00010 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00011 // See the License for the specific language governing permissions and 00012 // limitations under the License. 00013 00014 // Filename: classifier_tester.cpp 00015 // Purpose: Tests a character classifier on data as formatted for training, 00016 // but doesn't have to be the same as the training data. 00017 // Author: Ray Smith 00018 00019 #ifndef USE_STD_NAMESPACE 00020 #include "base/commandlineflags.h" 00021 #endif 00022 #include "baseapi.h" 00023 #include "commontraining.h" 00024 #include "cubeclassifier.h" 00025 #include "mastertrainer.h" 00026 #include "params.h" 00027 #include "strngs.h" 00028 #include "tessclassifier.h" 00029 00030 STRING_PARAM_FLAG(classifier, "", "Classifier to test"); 00031 STRING_PARAM_FLAG(lang, "eng", "Language to test"); 00032 STRING_PARAM_FLAG(tessdata_dir, "", "Directory of traineddata files"); 00033 00034 enum ClassifierName { 00035 CN_PRUNER, 00036 CN_FULL, 00037 CN_CUBE, 00038 CN_CUBETESS, 00039 CN_COUNT 00040 }; 00041 00042 const char* names[] = {"pruner", "full", "cube", "cubetess", NULL }; 00043 00044 // This program has complex setup requirements, so here is some help: 00045 // Two different modes, tr files and serialized mastertrainer. 00046 // From tr files: 00047 // classifier_tester -U unicharset -F font_properties -X xheights 00048 // -classifier x -lang lang [-output_trainer trainer] *.tr 00049 // From a serialized trainer: 00050 // classifier_tester -input_trainer trainer [-lang lang] -classifier x 00051 // 00052 // In the first case, the unicharset must be the unicharset from within 00053 // the classifier under test, and the font_properties and xheights files must 00054 // match the files used during training. 00055 // In the second case, the trainer file must have been prepared from 00056 // some previous run of shapeclustering, mftraining, or classifier_tester 00057 // using the same conditions as above, ie matching unicharset/font_properties. 00058 // 00059 // Available values of classifier (x above) are: 00060 // pruner : Tesseract class pruner only. 00061 // full : Tesseract full classifier. 00062 // cube : Cube classifier. (Not possible with an input trainer.) 00063 // cubetess : Tesseract class pruner with rescoring by Cube. (Not possible 00064 // with an input trainer.) 00065 int main(int argc, char **argv) { 00066 ParseArguments(&argc, &argv); 00067 // Decode the classifier string. 00068 ClassifierName classifier = CN_COUNT; 00069 for (int c = 0; c < CN_COUNT; ++c) { 00070 if (strcmp(FLAGS_classifier.c_str(), names[c]) == 0) { 00071 classifier = static_cast<ClassifierName>(c); 00072 break; 00073 } 00074 } 00075 if (classifier == CN_COUNT) { 00076 fprintf(stderr, "Invalid classifier name:%s\n", FLAGS_classifier.c_str()); 00077 return 1; 00078 } 00079 00080 STRING file_prefix; 00081 tesseract::MasterTrainer* trainer = tesseract::LoadTrainingData( 00082 argc, argv, true, NULL, &file_prefix); 00083 // We want to test junk as well if it is available. 00084 trainer->IncludeJunk(); 00085 // We want to test with replicated samples too. 00086 trainer->ReplicateAndRandomizeSamplesIfRequired(); 00087 00088 // We need to initialize tesseract to test. 00089 tesseract::TessBaseAPI api; 00090 tesseract::OcrEngineMode engine_mode = tesseract::OEM_TESSERACT_ONLY; 00091 if (classifier == CN_CUBE || classifier == CN_CUBETESS) 00092 engine_mode = tesseract::OEM_TESSERACT_CUBE_COMBINED; 00093 if (api.Init(FLAGS_tessdata_dir.c_str(), FLAGS_lang.c_str(), 00094 engine_mode) < 0) { 00095 fprintf(stderr, "Tesseract initialization failed!\n"); 00096 return 1; 00097 } 00098 tesseract::ShapeClassifier* shape_classifier = NULL; 00099 tesseract::Tesseract* tesseract = 00100 const_cast<tesseract::Tesseract*>(api.tesseract()); 00101 tesseract::Classify* classify = 00102 reinterpret_cast<tesseract::Classify*>(tesseract); 00103 // Copy the shape_table from the classifier and add the space character if 00104 // not already present to count junk. 00105 tesseract::ShapeTable shape_table; 00106 shape_table.set_unicharset(classify->shape_table()->unicharset()); 00107 shape_table.AppendMasterShapes(*classify->shape_table()); 00108 if (shape_table.FindShape(0, -1) < 0) 00109 shape_table.AddShape(0, 0); 00110 if (classifier == CN_PRUNER) { 00111 shape_classifier = new tesseract::TessClassifier(true, classify); 00112 } else if (classifier == CN_FULL) { 00113 shape_classifier = new tesseract::TessClassifier(false, classify); 00114 } else if (classifier == CN_CUBE) { 00115 shape_classifier = new tesseract::CubeClassifier(tesseract); 00116 } else if (classifier == CN_CUBETESS) { 00117 shape_classifier = new tesseract::CubeTessClassifier(tesseract); 00118 } else { 00119 fprintf(stderr, "%s tester not yet implemented\n", 00120 FLAGS_classifier.c_str()); 00121 return 1; 00122 } 00123 tprintf("Testing classifier %s:\n", FLAGS_classifier.c_str()); 00124 trainer->TestClassifierOnSamples(3, false, shape_classifier, NULL); 00125 if (classifier != CN_CUBE && classifier != CN_CUBETESS) { 00126 // Test with replicated samples as well. 00127 trainer->TestClassifierOnSamples(3, true, shape_classifier, NULL); 00128 } 00129 delete shape_classifier; 00130 delete trainer; 00131 00132 return 0; 00133 } /* main */ 00134 00135 00136 00137 00138 00139